138 research outputs found

    Improving the thermal stability of one-component polyurethane adhesives by adding filler material

    Get PDF
    The aim of the current study is to improve the thermal stability of one-component moisture-curing polyurethane adhesives. The approach here tends to add suitable filler materials to the adhesive and to study the resulting effects. The investigation covers mechanical tests to determine the shear strength of the glued wood joints according to EN 302-1 (2004). Furthermore, the distribution of the filler material within the adhesive is shown by means of environmental scanning electron microscopy combined with energy-dispersive X-ray spectroscopy analysis. The thermal stability of the glued wood joints could be significantly improved by adding chalk with a volume fraction of 30% to the adhesiv

    Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research

    Get PDF
    Recent advances in our understanding of the intestinal stem cell niche and the role of key signaling pathways on cell growth and maintenance have allowed the development of fully differentiated epithelial cells in 3D organoids. Stem cell-derived organoids carry significant levels of proteins that are natively expressed in the gut and have important roles in drug transport and metabolism. They are, therefore, particularly relevant to study the gastrointestinal (GI) absorption of oral medications. In addition, organoids have the potential to serve as a robust preclinical model for demonstrating the effectiveness of new drugs more rapidly, with more certainty, and at lower costs compared with live animal studies. Importantly, because they are derived from individuals with different genotypes, environmental risk factors and drug sensitivity profiles, organoids are a highly relevant screening system for personalized therapy in both human and veterinary medicine. Lastly, and in the context of patient-specific congenital diseases, orthotopic transplantation of engineered organoids could repair and/or replace damaged epithelial tissues reported in various GI diseases, such as inflammatory bowel disease, cystic fibrosis, and tuft enteropathy. Ongoing translational research on organoids derived from dogs with naturally occurring digestive disorders has the potential to improve the predictability of preclinical models used for optimizing the therapeutic management of severe chronic enteropathies in human patients

    Pilot study : duodenal MDR1 and COX2 gene expression in cats with inflammatory bowel disease and low-grade alimentary lymphoma

    Get PDF
    Altres ajuts: FCT/SFRH/BPD/109219/2015Multidrug resistance 1 (MDR1) encodes a protein called P-glycoprotein (P-gp), which serves as an efflux pump membrane protein implicated in intestinal homeostasis and drug resistance. Cyclooxygenase-2 (COX2) is a key enzyme in the synthesis of proinflammatory prostaglandins, tumourigenesis and in mucosal defence. Despite the importance of MDR1 and COX2, changes in their mRNA levels have not been studied in cats with inflammatory bowel disease (IBD) and low-grade alimentary lymphoma (LGAL). The present study aimed to determine the mRNA levels of MDR1 and COX2 in cats with IBD and LGAL, and to evaluate their correlation with clinical signs, histological severity and between genes

    Glucocorticoid and dietary effects on mucosal microbiota in canine inflammatory bowel disease

    Get PDF
    The pathogenesis of canine inflammatory bowel disease (IBD) involves complex interactions between mucosal immunity and the intestinal microbiota. Glucocorticoids are commonly administered to reduce mucosal inflammation and gastrointestinal signs. The study objective was to evaluate the effects of diet and oral prednisone on the spatial distribution of mucosal bacteria in IBD dogs. Eight dogs diagnosed with IBD were treated with immunosuppressive doses of prednisone. The mucosal microbiota from endoscopic biopsies of IBD dogs and healthy controls (HC; n = 15 dogs) was evaluated by fluorescence in situ hybridization (FISH) targeting the 16S rRNA genes of total bacteria and bacterial species relevant in canine/human IBD. Apicaljunction protein (AJP) expression using immunohistochemistry investigated the effect of medical therapy on intestinal barrier integrity. All IBD dogs had a reduction in GI signs following diet and prednisone therapy compared with baseline CIBDAI scores (P \u3c 0.05). The mucosal microbiota of HC and diseased dogs was most abundant in free and adherent mucus. Only Lactobacilli were increased (P \u3c 0.05) in the adherent mucus of IBD dogs compared to HC. The spatial distribution of mucosal bacteria was significantly different (P \u3c 0.05) in IBD dogs following prednisone therapy, with higher numbers of Bifidobacteria and Streptococci detected across all mucosal compartments and increased numbers of Bifidobacterium spp., Faecalibacterium spp., and Streptococcus spp. present within adherent mucus. Differences in intestinal AJPs were detected with expression of occludin increased (P \u3c 0.05) in IBD dogs versus HC. The expressions of occludin and E-cadherin were increased but zonulin decreased (P \u3c 0.05 for each) in IBD dogs following prednisone therapy. In conclusion, the spatial distribution of mucosal bacteria differs between IBD and HC dogs, and in response to diet and glucocorticoid administration. Medical therapy was associated with beneficial changes in microbial community structure and enhanced mucosal epithelial AJP expression
    corecore